/ Новости
Создать киборга
Недавно инженеры и ученые продемонстрировали управление квадрокоптером при помощи системы, анализирующей электроэнцефалограмму оператора. Как нам удалось выяснить, такие устройства есть уже у многих групп, в том числе и у российских ученых. В этой связи возникают два вопроса: насколько близко обещанное научной фантастикой будущее и почему оно до сих пор не наступило?
Отличительной особенностью управляемых силой мысли игрушечных вертолетов является то, что все системы по большей части собираются из компонентов, которые можно купить не в специализированных фирмах, а в обычных магазинах. Квадрокоптер, например, и в России, и в Китае, и в США выбрали одной и той же марки, AR.Drone, устройство для регистрации электрической активности мозга российская и китайская группы тоже купили стандартное. Все стороннее «железо» для нейроинтерфейса и сам квадрокоптер могут стоить меньше тысячи долларов США, так что такими исследованиями и разработками могут заниматься даже энтузиасты.
Уже можно найти инструкции по сборке нейроинтерфейса в домашней мастерской. Не самой простой, конечно — комплекта из дешевой отвертки и ржавого молотка будет недостаточно, но при наличии осциллографа,логического анализатора, паяльника и умения работать с электроникой задача, как уверяют нас на сайте Instructables, вполне решаема.
Может показаться, что если в приличной мастерской люди собирают управляемые силой мысли вертолеты, то уж по коридорам научных центров с миллиардными бюджетами должны расхаживать как минимум охранники в экзоскелетах, а то и какие-нибудь киберкрысы из нержавеющей стали (раз обычные крысы с дистанционным управлением уже стали реальностью). Но на практике это далеко не так. Сначала мы совершим экскурс в мир современных нейротехнологий и робототехники, а потом расскажем о проблемах, которые отделяют нас от представленных в кинофильмах киборгов.
Что уже есть: достижения
Показанное фантастами будущее становится ближе не только благодаря работам, в которых ученые и инженеры пытаются соединить мозг с компьютерной техникой, но и благодаря другим экспериментам. И многие из этих экспериментов остаются за пределами поля зрения неспециалистов, поскольку о них не так часто сообщается в популярной прессе.
Недавно был проведен ряд опытов по стимуляции мозга с учетом обратной связи. Медики разработали систему, которая сама отслеживает активность мозга при помощи прилегающих непосредственно к коре электродов и которая соединена с другими электродами, вживленными в более глубокие структуры. Обнаружив первые признаки эпилепсии, прибор подает профилактический разряд, способный, как показали клинические исследования, купировать приступ. Такая система имеет все признаки нейроинтерфейса: активность мозга управляет работой электроники и, сверх того, электроника сама влияет на работу мозга. Послать импульсы, которые не дадут разыграться эпилепсии, проще, чем передать осмысленную картинку высокой четкости, но для больных эпилепсией это немалое подспорье.
Механическая рука с управлением через нейроинтерфейс. Фото: Donoghue et.al, Nature, 2012
Женщина, в мозг которой вживлены подключенные к микрочипу BrainGate 2 электроды, парализована. Однако новая разработка позволила ей самостоятельно налить себе воды.
Другая разработка за счет обратной связи позволила найти более эффективный способ справляться с тремором конечностей при болезни Паркинсона и с мышечной дистонией. Ранее врачи уже умели бороться с этими симптомами стимуляцией глубоких отделов мозга, но в определенный момент заданная последовательность импульсов, поданная через электроды к клеткам таламуса, переставала оказывать терапевтический эффект. Избежать этого можно при помощи перепрограммирования стимулятора и перехода на иной тип стимуляции, но на практике каждое перепрограммирование означает обязательный визит в специализированный неврологический центр.
Новая система, которая уже испытана на животных, возможно, поможет избежать этих неудобств. Экспериментальный стимулятор отслеживает активность мозга при помощи вживленных вглубь мозга (а не просто подведенных к поверхности) электродов и через другие электроды подает корректирующие разряды. При этом программа стимуляции меняется на основе анализа активности: прибор сам корректируют свою работу, а не просто отслеживает работу мозга.
Если про глубокую стимуляцию мозга с положительной обратной связью мало кто слышал, то вот протезам сетчатки повезло больше. В настоящее время разрабатываются две принципиально разные схемы: для пациентов с уцелевшим зрительным нервом и для тех, кого одной лишь заменой светочувствительных элементов в глазах от слепоты не избавить. Первым уже успешно вживляют искусственную светочувствительную матрицу (как минимум одно устройство уже допущено на рынок), а вторым передают изображение с видеокамеры непосредственно к зрительной коре. Последнее, разумеется, требует не просто вживления USB-провода: специальный микрокомпьютер переводит сигнал с камеры на понятный нервным клеткам язык, и без долгой кропотливой работы специалистов по физиологии зрения такие протезы были бы невозможны.
Матрица вживляемых электродов. Фото: университет Беркли, coe.berkeley.edu.
Вживляемые электроды часто делают из золота — металла химически стойкого, прекрасно проводящего ток и позволяющего изготовить тонкие проволоки. Ведутся и эксперименты по созданию электродов из нанотрубок, а также других материалов.
Камеру закрепляют на очках, компьютерный блок размещают где-нибудь в удобном месте (он помещается в кармане и имеет габариты мобильного телефона), а сигнал на электроды передают без проводов по радиоканалу: устройство, работающее с нервными клетками напрямую, можно полностью убрать под кожу и тем самым минимизировать риск инфекции.
Никаких огромных разъемов на затылке, показанных в фильме «Матрица», медики видеть на человеке не желают: чем меньше отверстий, тем лучше. Электродные матрицы насчитывают иногда больше сотни отдельных тонких проволочек, закрепленных на общей пластине; вся конструкция немного напоминает игольчатый аппликатор-массажер, уменьшенный во много раз и выполненный из золота.
Работы по созданию протеза уха продвинулись еще дальше. Уже несколько лет назад в США систему из микрофона, микрокомпьютера и электродов, подключаемых к слуховым нервам, установили более чем 200 тысячам пациентов: это не единичные лабораторные эксперименты, а стандартная клиническая практика.
Протез для скоростной печати, фантастика. Изображение: кадр из аниме Ghost in the Shell
Эффектные протезы из аниме Ghost in the Shell позволяли пользователю набирать текст с фантастической скоростью. Но на практике задача прямой передачи текста из мозга в компьютер имеет все шансы быть решенной раньше, чем задача по созданию протезов со столь впечатляющей координацией движений.
Апгрейд человека, фантастика. Изображение: кадр из аниме Ghost in the Shell
Типичный образ киборга: человеческое тело либо усилено механическими вставками, либо собрано заново из искусственных компонентов. Начало Ghost in the Shell как раз представляет собой сцену сборки киборга.
Вживляемый металл, реальность. Фото: RobertGougaloff / Wikimedia
Сращивание живой плоти с металлом перестало быть фантастикой, и уже сейчас только в США за год проводится немногим менее миллиона операций по замене вышедших из строя суставов протезами. Но добиться неотторгаемости металла было непросто, да и работы в этом направлении не стоят на месте. На снимке показан контакт титанового эндопротеза с костной тканью.
Наконец, нельзя не сказать о том, что на поток поставлены операции по замене изношенных или больных суставов на искусственные протезы. Это не имеет отношения к нейроинтерфейсу, но говорить о полноценных киборгах с вживленными электронными компонентами без этого было бы как-то странно.
Хотелось бы большего
Теоретически нейроинтерфейс может вернуть возможность двигаться людям, у которых парализованы, повреждены или утрачены конечности или же нарушена координация движений из-за каких-либо неврологических проблем, не затронувших моторную кору. Но пока это теория, а на практике людям хочется все-таки не просто разворачивать к себе механическую руку с бутылочкой под присмотром трех врачей и одного инженера, а именно двигаться. То есть ходить, бегать, готовить себе еду и пользоваться окружающими предметами. Все, кто ходил с рукой в гипсе, знают: даже порезать хлеб или помыться с одной рукой сложно. Человеку нужна не отдельная рука, а полноценное движение.
Аналогичное разочарование неизбежно при столкновении с другими достижениями. Да, стимуляция коры мозга при эпилепсии позволяет предотвратить приступы — хорошо. Но ведь кроме эпилепсии есть множество иных расстройств и заболеваний, которые электростимуляция пока лечить не в состоянии. Да, незрячие могут обрести возможность рассмотреть контуры окружающих предметов, но это лишь полуслепота вместо слепоты, не более того. Пока и речи не идет о том, чтобы улучшить возможности здорового человека, ведь даже те методы управления техникой, которые не требуют вживления электродов в кору, дают худшую точность, чем традиционные кнопки, рычаги, рули и педали.
Сегодня автономные шагающие роботы — это вовсе не быстро бегающие за солдатами бронированные монстры с ракетницами, пулеметами, мощнейшей броней и быстрой реакцией. Это в лучшем случае ящики на громоздких и довольно капризных механических ногах, причем зачастую висящие на страховочных тросах. Хорошо, если они не падают в ходе испытаний.
Проблема: устоять на ногах и развернуться куда надо
Причин, по которым даже в лабораториях до сих пор нет киборгов, много. Пожалуй, самая серьезная из них заключается в том, что управление процессом ходьбы намного сложнее управления полетом квадрокоптера, а цена ошибки при этом выше. Грузовики, лестницы, открытые бассейны и обрывы, промышленное оборудование с движущимися частями — многие здоровые люди просто не замечают, насколько сложна и опасна окружающая их среда.
Большинство эффектных разработок последних десятилетий было направлено именно на создание роботов, способных перемещаться в пространстве с меньшими рисками, более стабильно и с сохранением равновесия при преодолении препятствий. Однако сделать робота, такого же универсального, как человек, пока не получилось: роботы могут выигрывать в грузоподъемности или выносливости, но проигрывать в проходимости и «пролезаемости». Безусловно, в специфических задачах вроде осмотра изнутри теплообменника ядерного реактора роботу-змее нет равных, но в повседневной жизни требуется вовсе не умение быстро передвигаться по изогнутым трубам.
Поддержание равновесия при ходьбе и тем более при лазании требует сложных систем управления и, что не менее важно, совершенной механики. Стоимость высокоточных и одновременно прочных деталей снижается куда менее стремительно по сравнению с электроникой, а ведь механической части киборгов требуется в первую очередь именно железо, а не полупроводниковые компоненты.
Еще проблема: как и откуда управлять
Если проблема поддержания равновесия шагающего робота находится в сфере компетенции кибернетиков (назовем специалистов по computer science в соответствии со старой традицией), то регистрация активности мозга больше волнует медиков и физиологов. На первый взгляд все просто: электроды в мозг без какого-то ощутимого вреда научились вживлять еще полвека назад, и уже тогда популярные издания писали про управление механизмами с помощью биотоков.
Подробнее о состоянии современных нейрокомпьютерных интерфейсов можно прочитать в двух сравнительно свежих обзорах на английском языке. Это Brain-Computer Interfaces in Medicine2012 года в журнале Mayo Clinic Proceedings и датируемый мартом 2013 года Neurosurgery and the dawning age of Brain-Machine Interfaces в специализированном издании Surgical Neurology International. Обе публикации выложены в открытый доступ.
Однако перед учеными сразу возник вопрос: а к какой из многих миллиардов клеток в моторной коре лучше подводить электроды для управления, скажем, протезом руки? Как эти клетки найти и как обеспечить требуемую точность? Как защититься от помех? Как перевести последовательность нервных импульсов конкретной клетки в команды механизму? Эти общие вопросы потянули за собой множество частных. Например, электроды стали довольно быстро обрастать слоем глиальных клеток, после чего снять с них сигнал оказывалось затруднительно. Создание необрастающих и притом безвредных микроэлектродов до сих пор является проблемой, не имеющей окончательного решения. Идут эксперименты с электродами из нанотрубок, со специальными покрытиями, на животных уже показана принципиальная возможность заменить электрические импульсы световыми (модифицировав нейроны методами генной инженерии), но говорить о решении пока рано.
Как наблюдать за процессом вживления электрода? Особенно если речь идет не о мыши, которой можно заменить половину черепа на прозрачную пластину, а о человеке? На этот вопрос ответа нет до сих пор. Многие физиологи решили на фоне всех этих сложностей обойтись без проникновения в мозг и предпочли использовать электроды на поверхности мозга или и вовсе на коже головы, но и там простого решения найдено не было. Чем дальше электроды от клеток и чем их меньше, тем существеннее вклад в регистрируемый сигнал не только нужных ученым нейронов, но и их соседей. С тем же успехом можно пытаться определить содержание телепрограммы не путем наведения телескопа на окно с телевизором, а при помощи видеосъемки ночного города с вертолета.
Системы управления квадрокоптерами, с рассказа о которых мы начали, основаны именно на регистрации электрической активности на коже головы. Они могут использоваться любым человеком, безопасны, но их точность все еще ниже, чем у традиционного управления чем-либо при помощи обыкновенной клавиатуры. Для человека с парализованными или серьезно поврежденными руками это, конечно, лучше, чем ничего, но все же не то, что показывают в фантастических фильмах. Экзоскелеты, которые усиливают движения (вроде показанного выше ReWalk) тоже хороши, но они и вовсе не имеют отношения к киборгизации: это скорее механизированные помощники, которые поддерживают при ходьбе.
Когда?
Когда можно будет говорить о воплощении в реальность сюжетов вроде «выжившему после автокатастрофы собрали новое тело» или «ГИБДД запретит с 1 июля машины с ручным управлением и оставит только управляемые моторной корой через специальный чип»? Вероятно, очень нескоро, хотя отдельные элементы кибербудущего уже с нами. По планете уже ходит около миллиона человек с металлическими деталями под нагрузкой (это упоминавшиеся эндопротезы тазобедренного сустава), стали рутиной кардиостимуляторы, скоро к ним добавятся искусственные глаза и уши, способные слышать и видеть.
Но на пути от размытых картинок (где с трудом видна входная дверь) и механической руки на столе (которой нельзя поесть при помощи вилки) к полноценному искусственному телу предстоит преодолеть еще очень много препятствий. Когда и как человечество научится делать подходящие электроды, когда начнет свободно перекодировать видео высокой четкости на язык нейронов, когда сделает прыгающего через завалы робота — на все эти вопросы ученые пока отвечают довольно неопределенно. Вероятно, у нас есть еще по меньшей мере лет двадцать.
Источник: http://lenta.ru/articles/2013/06/11/neuro/
Поделиться в Живом Журнале
Стать расой бессмертных – главная эволюционно-историческая задача человечества в III тысячелетии
Имея мышление бессмертных, парадигму бессмертных в качестве мировоззренческой основы, такие люди обязательно реализуют подобные технологии, и мир радикально изменится. Эволюционная ветвь гомо сапиенс в очередной раз сделает крутой вираж и вынесет человечество к невообразимым высотам, туда, где раньше парили только избранные одиночки – бессмертные и боги.
ПодробнееРобот открыл холодильник и принес оттуда пиво
Немецкие разработчики научили гуманоидного робота-помощника TIAGo самостоятельно искать путь к холодильнику, открывать его и приносить пиво. Модульный суперкомпьютер NVIDIA Jetson TX2, служащий зрительным центром робота, позволил ему не только эффективно проложить путь, но и найти пиво запрошенной марки по этикетке.
ПодробнееВ Швеции попытаются создать электронные копии умерших людей
Руководство крупной сети шведских похоронных бюро «Феникс» поставило перед собой амбициозную цель: попытаться создать максимально правдоподобные электронные копии усопших людей.
ПодробнееУчёные из США разработали искусственный аналог глаза
Новое изобретение представили учёные из Школы инженерных и прикладных наук при Гарвардском университете — они создали искусственный глаз, работающий по принципу человеческого.
ПодробнееАмериканцы занялись разработкой реактивных дронов для истребителей
Массачусетский технологический институт по заказу ВВС США занялся разработкой компактных реактивных беспилотных летательных аппаратов, которые можно было бы запускать со стандартного подвеса для ракет под крылом истребителя. Новая разработка получила название Firefly.
ПодробнееToyota представила гуманоидного робота с экзоскелетным управлением
Компания Toyota представила гуманоидного робота T-HR3, управляемого с помощью экзоскелетного контроллера с шлемом виртуальной реальности. Система позволяет оператору управлять движениями робота на месте или передвигать его, а также чувствовать отдачу при взаимодействии с объектами.
ПодробнееЧеловекоподобный робот научился делать сальто
Специалисты Boston Dynamics научили прямоходящего робота Atlas выполнять сальто. Ролик с демонстрацией его новых способностей опубликован на YouTube-канале компании.
ПодробнееРобот-спасатель от Honda: пять «глаз» и 33 степени подвижности
На Конференции по робототехнике в Ванкувере компания Honda представила прототип робота-спасателя E2-DR. У новинки 33 степени подвижности, пять «глаз» и защищенный от пыли и влаги корпус.
ПодробнееToyota представила автомобиль-робот, в салоне которого сразу 2 водительских места
Казалось бы, суть самоуправляемых автомобилей заключается в том, чтобы максимально обеспечить удобство пассажиров и «убрать» из салона водителя, доверив контроль за ситуацией роботу. Вроде бы логичное решение, но вот автоконцерн Toyota думает иначе. Недавно они представили крайне продвинутую версию самоуправляемого авто. Только вот водительских мест в нем аж целых два.
ПодробнееRHP2 - гуманоидный робот, созданный для того, чтобы падать, подниматься и снова падать
Исследователи-робототехники во всем мире тратят безумно большое количество времени и усилий для того, чтобы предотвратить или уменьшить вероятность падения создаваемых ими роботов.
ПодробнееМифы и факты о сверхумном искусственном интеллекте
Станет ли искусственный интеллект лучшим изобретением человечества или же, наоборот, его худшей ошибкой?
Подробнее/ мнения экспертов и членов инициативной группы
- Акоп ПогосовичДоктор философских наук, канд. психологических наук, главный редактор журнала «Историческая психология и социология истории», профессор МГУ.
Назаретян«Интеллект современного человека – это искусственный интеллект. Естественным осталось только то, что он на белковом носителе, т.е. естествен не интеллект, а мозг...»
- Сергей ДмитриевичДоктор химических наук, профессор, заведующий кафедрой химической энзимологии МГУ, член-корреспондент Российской Академии наук, директор Института биохимической физики РАН
ВарфоломеевЧлен инициативной группы«Нужно иметь электронный вариант мозга. Физический мозг, на мой взгляд, не может являться предметом интереса, так как он очень субтилен. Но вот создание электронного аналога с полным рецепторным оснащением, которое имело бы ту же историю, стимулы, мотивации, — это может оказаться очень интересно...»
- ДмитрийДиректор Всероссийского НИИ электрификации сельского хозяйства РАСХН
Стребков«Мы предлагаем шесть стратегических проектов для будущего мира, которые позволят увеличить энергетическую безопасность и создать новое энергетическое снабжение Земли, не основанное на сжигании ископаемого топлива».
- Дмитрий ХаметовичХудожник, теоретик искусства, куратор Государственного центра современного искусства (Калининградский филиал)
БулатовЧлен инициативной группы«В ближайшем будущем гибридные схемы из комбинаций живых и неживых элементов позволят вернуть утраченные или изначально отсутствующие функции. И конечно, заметно усилить их по сравнению с обычными...»
- Давид ИзраилевичДоктор философских наук, профессор, главный научный сотрудник Института философии РАН, сопредседатель Научного совета РАН по методологии ИИ
Дубровский«... этот проект ["Россия 2045"], безусловно, заслуживает всемерной поддержки. Он инициирован молодыми людьми, полными веры в свою высокую миссию. Это яркий акт пассионарности... вызов нашей академической общественности, среднему, сероватому научному сознанию, лишенному порывов вдохновения».
- Андрей ЮрьевичКандидат физико-математических наук, координатор международного проекта OpenWorm с российской стороны, научный сотрудник лаборатории Моделирования сложных систем ИСИ СО РАН им. А.П. Ершова
Пальянов«...Когда мы разгадаем червя – мы поймем жизнь...»
- Вячеслав ЕвгеньевичДоктор биологических наук, профессор, изобретатель аппарата «Биоискусственная печень»
РябининЧлен инициативной группы«Вся тенденция развития науки показывает: то, что мы считали невозможным, становится возможным. Кто мог представить, что руки и ноги начнут ходить под влиянием соответствующих импульсов? Прогресс движется не в арифметической, а в геометрической прогрессии...»
- Александр ВладимировичМастер ТРИЗ, вице-президент Международной ассоциации ТРИЗ, ректор Московского общественного института технического творчества
Кудрявцев«Развитие технической цивилизации в конечном счете приведет к полной автономии человека от внешних обстоятельств. Техника свернется как тонкая пленка, как некая субстанция, пронизывающая человека...»
- Дмитрий ВладимировичИсторик и теоретик культуры, культуролог, консультант по культурному развитию. Доцент Института искусств и культуры и Философского факультета ТГУ
Галкин«Искусство – уникальный ресурс для фабрики инноваций. Только в искусстве креативная мощь так тесно связана с порождением смыслов и гуманизацией технологий...»
- АндерсФутуролог, трансгуманист, писатель, член Исследовательского общества Джеймса Мартина в Институте будущего человечества в Оксфордском университете
Сандберг«Я, определенно, захотел бы перенести свой разум в искусственное тело, если бы для этого существовала достаточно безопасная технология...»
- Александр ИвановичДоктор технических наук, профессор, заслуженный деятель наук России, является автором более 300 научных работ, в том числе 25 монографий
Галушкин«Я убежден в том, что нейросетевые технологии – это основа построения будущих систем управления роботами, т.е. мозга будущих роботов».
- Владимир АнатольевичРуководитель компании «Нейроботикс»
КонышевЧлен инициативной группы«Перенос мозга в искусственное тело — более выносливое, более совершенное — единственная возможность человеческой расе остаться на Земле...»
- Виктор ФедоровичЧлен-корр. РАН, профессор МГУ, заведующий лабораторией «Психология общения и психосемантика» (МГУ)
Петренко«Возможно, вырабатывая своеобразную систему значений, не привязанную к нашему конкретному миру, с одной стороны, а с другой – разрабатывая изощренные техники медитации и психопрактики, мы выйдем на контакт с возможными мирами на глубинных медитативных уровнях...»
- КевинБританский учёный-киборг. Доктор наук в области технической кибернетики (Институт теории информации и автоматизации Чешской АН, 1994). PhD в области электротехники (системы управления) (Имперский колледж Лондона, 1982)
Уорвик«...Я прочел все ваши материалы, и большинство идей мне очень близки. Ваш план работ на ближайшие 30 лет меня восхищает!»
- Владимир ГригорьевичДоктор физико-математических наук, профессор, руководитель группы автоволновых процессов, заведующий лабораторией Института прикладной физики РАН
ЯхноЧлен инициативной группы«Думаю, что именно понимание закономерностей в иерархии механизмов управления живыми системами позволит создать основу для производства эффективно работающих искусственных органов и имитаций тел человека.»