/ Новости
Естественное стремление к искусственным органам: печатаем живыми клетками
С технологией 3D-печати и биопринтерами в медицине связано много разработок, кажущихся фантастическими. Быстрое заживление обширных ран, воссоздание сосудов, клапанов, суставных поверхностей и в перспективе – послойная печать целых органов. Что возможно уже сейчас, и какие направления актуальны в медицинской 3D-печати?
Что такое биопечать?
Согласно тезисам Международной конференции 3B’09, биопечатью называется использование автоматизированных процессов при сборке из биологических материалов определённой плоской или объёмной структуры для нужд регенеративной медицины, фармакологических и цитобиологических исследований.
Параллельно в русскоязычной печати прижился и другой термин (калька с английского) – биопринтинг. Процесс действительно напоминает струйную печать, в которой вместо пигментов используются живые клетки. Это может быть монокультура клеток с конечной функцией (например, клетки внутренней оболочки сосудов) или взвесь плюрипотентных стволовых клеток, способных сформировать любую ткань.
3D-биопринтер в лаборатории (фото: Wiired)
Послойная печать тканей и органов создаёт базу для развития трансплантологии. Это направление способно решить множество актуальных медицинских проблем. В первую очередь снимаются вопросы долгого ожидания донорских органов, риск их отторжения и осложнений в связи с подавлением иммунитета.
История вопроса
Идея использовать клеточные культуры вместо чернил и создавать биологические ткани методами модифицированной струйной печати зародилась в конце прошлого века. Одной из первых публикаций о её успешном освоении можно считать статью Владимира Миронова и соавторов, вышедшую в апреле 2003 года в журнале Trends in Biotechnology.
Приставка 3D была использована в ней скорее как указание на перспективы работы, поскольку на тот момент в самом исследовании удалось создать один слой эндотелиальных клеток и полученную структуру нельзя было назвать объёмной. Главным достижением проведённого исследования была демонстрация самой возможности прецизионно размещать живые клетки методами струйной печати с сохранением их жизнеспособности.
На протяжении последующих лет каждая группа исследователей использовала свой вариант биопринтера и различные вариации методики распределения клеток. Первый серийно выпускаемый биопринтер появился в конце 2009 года. Он был изготовлен австралийской компанией Invetech по заказу американской Organovo. Последняя фирма была основана в 2007 году и уже спустя пять лет упоминалась в обзоре MIT среди наиболее инновационных компаний. Взгляните на следующий ролик.
Недавно Organovo заключила контракт с Autodesk. В известных системах автоматизированного проектирования органы будут чертить примерно так же, как детали для автомобилей и роботов.
Проблемы и решения
С этапом проектирования особых вопросов не возникает, однако сам процесс печати при этом имеет важное отличие. «Биологические чернила» состоят из нескольких компонентов, которые надо точно дозировать так, чтобы «печатающие головки» не мешали друг другу. Над развитием многокомпонентной печати активно работает компания AMTecH.
Концепт многокомпонентной системы печати биопечати (изображение: pcmweb.nl)
Сейчас технология печати живыми клетками сдерживается массой факторов. Наивно полагать, что через год-два начнут печатать органы, а службу по заготовке донорских образцов можно будет упразднить. Помимо специфических сложностей в самой процедуре 3D-печати разными клетками есть целый ряд общих проблем.
Например, каждый орган требует «подключения» к нервной системе и разветвлённой сети кровеносных сосудов. Если проблема реиннервации ещё как-то решается современной трансплантологией, то питающая сеть сосудов нужна уже на этапе формирования органа. Кровеносная система даже на отдельных участках буквально пронизана хитросплетениями. Собственные сосуды есть и во внешних оболочках артерий и вен, а порядок ветвлений внутри органа часто превышает десять уровней.
Модели кровеносной системы почек и печени (изображение: sciencephoto.com, anatomikmodeller.com)
Напечатать кровеносный сосуд пока ещё сложно даже на уровне концепции. Это не эластичная трубка заданного диаметра, как представляется большинству людей с техническим образованием. У сосудов каждого типа есть важные особенности, которые необходимо уметь воспроизвести.
Артерии и вены состоят из слоёв разных клеток, которые образуют специфическую пространственную структуру. Она позволяет каждому сосуду взаимодействовать с другими и с организмом в целом. Даже диаметр пор в стенках и локальный тонус регулируются очень непросто.
Сейчас в рамках исследований уровня доказательства концепции удаётся напечатать лишь единичные мелкие сосуды и отдельные фрагменты крупных. Пока не решится проблема полноценной васкуляризации органов в процессе объёмной печати, пытаться создать их бесполезно.
Говоря о более реалистичных задачах, часто упоминают кожу. Иной раз её приводят как пример перспективного направления двумерной биопечати, но кожа кажется простой тканью только до тех пор, пока не попытаешься её воссоздать. Один только эпидермис состоит из пяти слоёв. Их структура разная, как и морфология кератиноцитов. Нельзя просто взять, напечатать и приживить лоскут кожи, хотя вы найдёте множество статей, описывающих «успешные эксперименты». Почему же так получается?
Эта искусственная кожа в основном состоит из бычьего коллагена (фото: Dan McCoy — Rainbow/Science Faction/Corbis)
Одна из причин заключается в том, что клеточная культура в биопринтере смешивается с гидрогелем. В последнее время именно с гидрогелями связаны определённые успехи. Им научились придавать множество интересных свойств, в том числе физических, антибактериальных и фунгицидных.
Попадая на раневую поверхность, гидрогель выполняет ту же функцию, что и в клеточной культуре из биопринтера. Он создаёт объёмную пористую микроструктуру для миграции клеток и служит для них опорой. Регенерация происходит эффективнее, а рана внешне заживает гораздо быстрее и аккуратнее.
Сканирующая электронная микроскопия фрагмента гидрогеля (фото: Nanoscale Informal Science Education Network)
Если в наносимой смеси была ещё и какая-то часть размноженных клеток, возможно, они тоже сыграют некоторую положительную роль. Впрочем, на сегодня более вероятно, что они замедлят регенерацию и чистый гидрогель окажется предпочтительнее. Печать заплаток для раневых поверхностей – дело будущего, но пока ещё не настоящего.
Решать озвученные проблемы планируется в первую очередь за счёт использования свойства самоорганизации живой материи и усиления регенеративных возможностей. Гидрогель и другие соединения сейчас выполняют важную функцию опоры, но в будущем от этих костылей надо постепенно избавляться. Считается, что достаточно воссоздать базовую структуру органа, а более специфические детали в нём сформируются самостоятельно. Основной вопрос заключается в том, как заставить искусственный орган правильно «дозревать» вне организма.
Основные направления
Существующие достижения – это не просто задел на будущее. Помимо перспективной задачи изготовления органов, у биопечати есть и другие применения. Основное направление, уже дающее плоды сегодня, – токсикологические исследования различных веществ и новых фармацевтических препаратов без использования лабораторных животных.
Дело здесь не столько в этике, сколько в целесообразности. Токсикологические эксперименты на лабораторных животных характеризуются относительно низким показателем воспроизводимости результатов. Вдобавок они требуют эмпирических методов пересчёта для учёта отличий в строении человека.
3D-биопринтер Organovo (фото: Wired)
Концептуально сходный исследовательский приём – моделирование патологических процессов с целью изучения ключевых механизмов их развития. На животных это делать непродуктивно, а идентичная ткань будет практически идеальной моделью. Упомянутая Organovo в 2013 году начала сотрудничать в этом направлении с Институтом проблем рака при университете штата Орегон.
В целом биопечать позволяет оценить многие аспекты влияния различных веществ и процессов непосредственно на тех клетках, которые являются основными мишенями для новых препаратов. Наиболее полноценно это можно сделать в рамках концепции «лаборатория-на-чипе», о которой «Компьютерра» уже писала.
Перспективы
Наибольший интерес проявляется к грантам на послойное создание из живых клеток работающей и пригодной для трансплантации почки. На втором месте стоит задача биопечати печени и поджелудочной железы. Эти тему в последние годы относительно щедро финансируют NASA, DARPA, другие крупные агентства и неправительственные организации. Однако сначала всё же попытаются создать простые полые органы, и только затем придёт очередь более сложных – паренхиматозных. В настоящее время исследователи отмечают, что при существующих темпах развития отрасли доли первых органов можно будет напечатать не ранее чем к 2030 году. Берегите себя! Менять запчасти по гарантии нам будут ещё не скоро.
Источник: http://www.computerra.ru/61217/3d-bioprinting/
Поделиться в Живом Журнале
Стать расой бессмертных – главная эволюционно-историческая задача человечества в III тысячелетии
Имея мышление бессмертных, парадигму бессмертных в качестве мировоззренческой основы, такие люди обязательно реализуют подобные технологии, и мир радикально изменится. Эволюционная ветвь гомо сапиенс в очередной раз сделает крутой вираж и вынесет человечество к невообразимым высотам, туда, где раньше парили только избранные одиночки – бессмертные и боги.
ПодробнееРобот открыл холодильник и принес оттуда пиво
Немецкие разработчики научили гуманоидного робота-помощника TIAGo самостоятельно искать путь к холодильнику, открывать его и приносить пиво. Модульный суперкомпьютер NVIDIA Jetson TX2, служащий зрительным центром робота, позволил ему не только эффективно проложить путь, но и найти пиво запрошенной марки по этикетке.
ПодробнееВ Швеции попытаются создать электронные копии умерших людей
Руководство крупной сети шведских похоронных бюро «Феникс» поставило перед собой амбициозную цель: попытаться создать максимально правдоподобные электронные копии усопших людей.
ПодробнееУчёные из США разработали искусственный аналог глаза
Новое изобретение представили учёные из Школы инженерных и прикладных наук при Гарвардском университете — они создали искусственный глаз, работающий по принципу человеческого.
ПодробнееАмериканцы занялись разработкой реактивных дронов для истребителей
Массачусетский технологический институт по заказу ВВС США занялся разработкой компактных реактивных беспилотных летательных аппаратов, которые можно было бы запускать со стандартного подвеса для ракет под крылом истребителя. Новая разработка получила название Firefly.
ПодробнееToyota представила гуманоидного робота с экзоскелетным управлением
Компания Toyota представила гуманоидного робота T-HR3, управляемого с помощью экзоскелетного контроллера с шлемом виртуальной реальности. Система позволяет оператору управлять движениями робота на месте или передвигать его, а также чувствовать отдачу при взаимодействии с объектами.
ПодробнееЧеловекоподобный робот научился делать сальто
Специалисты Boston Dynamics научили прямоходящего робота Atlas выполнять сальто. Ролик с демонстрацией его новых способностей опубликован на YouTube-канале компании.
ПодробнееРобот-спасатель от Honda: пять «глаз» и 33 степени подвижности
На Конференции по робототехнике в Ванкувере компания Honda представила прототип робота-спасателя E2-DR. У новинки 33 степени подвижности, пять «глаз» и защищенный от пыли и влаги корпус.
ПодробнееToyota представила автомобиль-робот, в салоне которого сразу 2 водительских места
Казалось бы, суть самоуправляемых автомобилей заключается в том, чтобы максимально обеспечить удобство пассажиров и «убрать» из салона водителя, доверив контроль за ситуацией роботу. Вроде бы логичное решение, но вот автоконцерн Toyota думает иначе. Недавно они представили крайне продвинутую версию самоуправляемого авто. Только вот водительских мест в нем аж целых два.
ПодробнееRHP2 - гуманоидный робот, созданный для того, чтобы падать, подниматься и снова падать
Исследователи-робототехники во всем мире тратят безумно большое количество времени и усилий для того, чтобы предотвратить или уменьшить вероятность падения создаваемых ими роботов.
ПодробнееМифы и факты о сверхумном искусственном интеллекте
Станет ли искусственный интеллект лучшим изобретением человечества или же, наоборот, его худшей ошибкой?
Подробнее/ мнения экспертов и членов инициативной группы
- Андрей ЮрьевичКандидат физико-математических наук, координатор международного проекта OpenWorm с российской стороны, научный сотрудник лаборатории Моделирования сложных систем ИСИ СО РАН им. А.П. Ершова
Пальянов«...Когда мы разгадаем червя – мы поймем жизнь...»
- Борис КарповичДоктор медицинских наук, профессор, заведующий лабораторией роста клеток и тканей Института теоретической и экспериментальной биофизики РАН
Гаврилюк«Для кожи киборга нужно просто сделать систему питания. А вообще... мы ведь несложно устроены! Есть всего несколько систем: кровеносная разносит кислород и питательные вещества, выделительная выводит отходы. Остальное — рабочие органы. Вначале можно сделать простейший живой организм. А потом более сложные системы...»
- Павел ОлеговичПрофессор практики Московской школы управления СКОЛКОВО, к.э.н., партнер группы "Метавер"
Лукша«Развитие интерфейсов позволяет принципиально по-другому взаимодействовать не только с локальным пространством, но и с глобальным пространством, т.е. продолжая «мозг – компьютер – Сеть», мы можем получать системы принципиально нового способа организации».
- Вячеслав ЕвгеньевичДоктор биологических наук, профессор, изобретатель аппарата «Биоискусственная печень»
РябининЧлен инициативной группы«Вся тенденция развития науки показывает: то, что мы считали невозможным, становится возможным. Кто мог представить, что руки и ноги начнут ходить под влиянием соответствующих импульсов? Прогресс движется не в арифметической, а в геометрической прогрессии...»
- Сергей ВасильевичДоктор физико-математических наук, профессор, заведующий кафедрой биомедицинских систем Московского государственного института электронной техники, главный редактор журнала «Медицинская техника»
СелищевЧлен инициативной группы«Глобальных и неразрешимых технических проблем для создания полностью искусственного тела не существует. Все задачи понятны и потенциально решаемы...»
- Владимир НиколаевичДиректор Филиала РГМУ «НКЦ геронтологии» Минздравсоцразвития РФ, академик РАМН, доктор медицинских наук, профессор
Шабалин«Россия была и остаётся богатой интеллектуалами, несмотря на значительную утечку мозгов за рубеж. А когда будут первые результаты, с удовольствием вернутся и наши специалисты и потянутся иностранные...»
- Марат СеменовичРазработчик инновационных технологий, изобретатель, мастер ТРИЗ (теория решения изобретательских задач), кандидат педагогических наук
Гафитулин«...В моем понимании слияние человека и машины началось сразу же, как только человек целенаправленно взял в руки предмет своего труда».
- Александр ВладимировичМастер ТРИЗ, вице-президент Международной ассоциации ТРИЗ, ректор Московского общественного института технического творчества
Кудрявцев«Развитие технической цивилизации в конечном счете приведет к полной автономии человека от внешних обстоятельств. Техника свернется как тонкая пленка, как некая субстанция, пронизывающая человека...»
- Владимир ГригорьевичДоктор физико-математических наук, профессор, руководитель группы автоволновых процессов, заведующий лабораторией Института прикладной физики РАН
ЯхноЧлен инициативной группы«Думаю, что именно понимание закономерностей в иерархии механизмов управления живыми системами позволит создать основу для производства эффективно работающих искусственных органов и имитаций тел человека.»
- Сергей НиколаевичРуководитель Отдела медицинской психологии (Научный Центр Психического Здоровья РАМН), действительный член Академии медико-технических наук РФ
Ениколопов«Разговоры о том, что технологически мы можем достичь бессмертия, во всяком случае, фантастического удлинения жизни, ведут к пересмотру огромного пласта наших собственных убеждений».
- Виталий ЛьвовичДоктор физико-математических наук, профессор, заведующий отделом нейроинформатики Центра оптико-нейронных технологий НИИСИ РАН
Дунин-Барковский«Для создания искусственного тела нужен хороший мозг, интеллект. А он может быть и искусственным. Воссоздание органов — очень сложная и ресурсоемкая задача. При работе над искусственным интеллектом затраты минимальны, а результаты колоссальны...»
- Виктор ФедоровичЧлен-корр. РАН, профессор МГУ, заведующий лабораторией «Психология общения и психосемантика» (МГУ)
Петренко«Возможно, вырабатывая своеобразную систему значений, не привязанную к нашему конкретному миру, с одной стороны, а с другой – разрабатывая изощренные техники медитации и психопрактики, мы выйдем на контакт с возможными мирами на глубинных медитативных уровнях...»
- ДмитрийПредседатель оргкомитета политической партии «Эволюция 2045», основатель движения «Россия 2045», президент конгресса GF2045
ИцковСтрах перед умиранием, на которое запрограммированы наши биологические тела, словно сковал волю руководителей человечества и сформировал непреодолимое табу на публичное обсуждение и принятие решений по борьбе со смертью.
- БарриМеждународный координатор Ассоциации Всемирной Истории, сопредседатель Оргкомитета GF2045
Родриг«Инновации нужно направить на экологическое равновесие видов и разрушение неорганической среды обитания. Нужно найти альтернативы войне и оружейной промышленности. То есть инновация – это процесс, который должен быть применен ко всему существующему...»
- Александр ЯковлевичДоктор биологических наук, профессор, заведующий лабораторией нейрофизиологии и нейроинтерфейсов биологического факультета МГУ им. М.В. Ломоносова
Каплан«К тому времени, когда мозг можно будет перенести в искусственное тело, роботы достигнут совершенства формы и будут выглядеть, как вполне приличное человеческое тело...»