/ Новости

Новая буква в биологии
Биологи добавили в алфавит ДНК новые искусственные «буквы», которых не существует в природе. О том, почему ДНК не погибла, а, оказавшись в бактерии, смогла воспроизводиться, автор исследования рассказал «Газете.Ru».
Ученые из Исследовательского института Скриппс сделали важный шаг к созданию синтетической жизни. Они создали биоинженерную бактерию, которая использует ДНК с двумя дополнительными искусственными «буквами».
В ДНК вставили два азотистых основания, которых не существует в природе.
Эта полусинтетическая ДНК способна к репликации — воспроизведению себя — в живой бактериальной клетке. Результаты эпохального достижения биологи опубликовали в журнале Nature, причем первый автор статьи — наш соотечественник Денис Малышев, работающий в лаборатории Ромесберга Института Скриппс..
ДНК всех живых организмов состоит из «букв» — нуклеотидов, основу которых составляют четыре азотистых основания (аденин, гуанин, тимин, цитозин). При построении двойной спирали ДНК они объединяются в пары A-T и C-G. «Мы создали живой организм, который использует кроме этих пар еще одну искусственную пару оснований, — объясняет руководитель работы профессор Флойд Роменсберг. — Это доказывает, что для хранения генетической информации возможны и другие решения кроме существующих в природе».
Исследователи лаборатории Ромесберга уже с конца 1990-х годов работают над поиском молекул, которые могли бы расширить генетический алфавит. Это непростая задача, так как искусственные основания должны иметь такие же свойства химически объединяться в пару, как A-T и C-G. Эта пара должна быть стабильна и в то же время распадаться под действием фермента ДНК-полимеразы, так как при репликации ДНК первым шагом является разъединение цепей.
Эту задачу ранее уже удалось решить «в пробирке» — ученые предложили ДНК несколько искусственных оснований (UBPs), которые она в себя приняла. В 2008 году ученые в лаборатории Ромесберга синтезировали основания d5SICS и dNaM, которые образуют пару.
Они показали, что эта пара стабильна, но распадается под действием фермента ДНК-полимеразы.
Позже им удалось показать, что на полусинтетической ДНК образуется РНК. Остался последний шаг — вставить ДНК с лишними «буквами» в живую клетку.
«Пара искусственных оснований отлично работала in vitro, но основной вызов состоял в том, чтобы проверить их работу в гораздо более сложной системе — в живой клетке», — говорит Денис Малышев.
Ученые синтезировали кольцевую ДНК с искусственными основаниями – плазмиду, и вставили ее в бактерию кишечной палочки E.coli. Основная задача состояла в том, чтобы проверить, будет ли полусинтетическая ДНК реплицироваться – воспроизводить себя. Для этого в среду, содержащую бактерии, добавили искусственные основания d5SICS и dNaM. Затем надо было добиться, чтобы основания присоединяли к себе сахара и фосфаты и превращались в нуклеотиды. В этом помог транспортный белок, который ученые выделили из одноклеточных водорослей.
Ученые были поражены, когда увидели, что полусинтетическая ДНК реплицировалась с вполне приемлемой скоростью и точностью.
Искусственные основания при этом не терялись, а биоинженерная кишечная палочка росла ненамного медленнее, чем обычная.
«Большим прорывом является то, что мы получили управляемую систему, — подчеркивает Денис Малышев. — Когда мы прекращаем подачу в клетку искусственных оснований или транспортера трифосфатов, ДНК переходит на естественные основания, и d5SICS и dNaM просто исчезают из генома».
На следующем этапе исследователи должны проверить, возможна ли в клетке транскрипция ДНК с лишними «буквами», то есть синтез РНК по ее матрице. Это первый этап в процессе синтеза белка. «В принципе, мы можем закодировать и получить совершенно новые белки, состоящие из искусственных аминокислот, — считает Ромесберг. —
Это открывает огромные возможности для медицины будущего – мы сможем изготавливать белки по заказу для терапевтических целей.
Другая возможная область применения — это нанотехнология и наноматериалы».
Денис Малышев ответил на вопросы «Газеты.Ru»:
— Как шла работа по поиску искусственных оснований?
— В течение последних 14 лет лаборатория доктора Ромесберга работала над созданием и оптимизацией синтетических оснований. Первый прорыв был сделан в 2008 году, когда после скрининга 3600 комбинаций различных оснований мы нашли пару, которая отвечала нашим ожиданиям.
Затем был долгий процесс оценки и оптимизации ее работы in vitro («в пробирке). И мы убедились в том, что in vitro наша пара оснований работает не хуже, чем естественные пары.
Результат дал нам возможность попробовать внедрить пару искусственных оснований в живой организм, что было очень амбициозной задачей.
— Какие задачи вам надо было решить на этом этапе?
— Основной проблемой было создать генетически-модифицированную линию E.coli с уникальным транспортным белком, который бы специфически переносил синтетические основания. Это было необходимо, чтобы создать синтетические нуклеотиды — блоки для построения ДНК в процессе ее репликации внутри клетки.
То есть основные наши прорывы: 1) синтетические основания эффективно внедрялись в ДНК, и она была способна к репликации; 2) использование транспортного белка для переноса их в клетку; 3) система редактирования ДНК принимала их и не удаляла.
— Способна ли была полусинтетическая ДНК к синтезу РНК, к транскрипции?
— Хороший вопрос. В соответствии с дизайном нашего первого эксперимента, мы вставили искусственную пару оснований в некодирующую область ДНК. Поэтому мы не могли проверить возможность транскрипции и трансляции. Но мы активно работаем над этим и уверены в успехе.
— Какие перспективы вы видите у своего достижения? Будут ли у него ли практические применения?
— Ограниченное число комбинаций оснований ДНК (A, T, G и C) ограничивает число видов белков, которые могут синтезироваться. Добавив к генетическому алфавиту искусственные основания X и Y, мы расширяем «белковый словарь».
Это позволит нам получать совершенно новые белки для создания лекарств, новых методов диагностики и совершенствования вакцин.
Мы уже начали работать над транскрипцией (синтез искусственной РНК на искусственной ДНК) и трансляцией (синтез искусственных белков на искусственной РНК) в живой клетке. Мы собираемся развивать свою технологию на базе созданной компании Synthorx и будем работать с нашими партнерами над инновационными решениями в области медицины и биотехнологии.
— Можно ли считать расширение генетического алфавита шагом к созданию синтетической жизни?
— Мы не создаем новую жизнь. Мы используем существующие одноклеточные организмы и расширяем их возможности, чтобы создавать новые продукты для медицины и помогать людям.
— Как соотносится ваша работа с тем, что делает в этой области Крейг Вентер?
— Многие люди слышали о достижениях синтетической биологии, когда в лаборатории были синтезированы малый геном бактерии (Venter, 2010) и искусственная хромосома (JHU, 2014) и внедрены в живые организмы. Но при этом в ДНК были использованы естественные пары оснований (A, T, G и C).
Наша работа другая, и то, что мы сделали, не делал больше никто. Мы создали третью пару оснований для ДНК и показали ее работу в живом организме.
Источник: http://www.gazeta.ru/science/2014/05/08_a_6022149.shtml
Поделиться в Живом Журнале
Стать расой бессмертных – главная эволюционно-историческая задача человечества в III тысячелетии
Имея мышление бессмертных, парадигму бессмертных в качестве мировоззренческой основы, такие люди обязательно реализуют подобные технологии, и мир радикально изменится. Эволюционная ветвь гомо сапиенс в очередной раз сделает крутой вираж и вынесет человечество к невообразимым высотам, туда, где раньше парили только избранные одиночки – бессмертные и боги.
ПодробнееРобот открыл холодильник и принес оттуда пиво
Немецкие разработчики научили гуманоидного робота-помощника TIAGo самостоятельно искать путь к холодильнику, открывать его и приносить пиво. Модульный суперкомпьютер NVIDIA Jetson TX2, служащий зрительным центром робота, позволил ему не только эффективно проложить путь, но и найти пиво запрошенной марки по этикетке.
ПодробнееВ Швеции попытаются создать электронные копии умерших людей
Руководство крупной сети шведских похоронных бюро «Феникс» поставило перед собой амбициозную цель: попытаться создать максимально правдоподобные электронные копии усопших людей.
ПодробнееУчёные из США разработали искусственный аналог глаза
Новое изобретение представили учёные из Школы инженерных и прикладных наук при Гарвардском университете — они создали искусственный глаз, работающий по принципу человеческого.
ПодробнееАмериканцы занялись разработкой реактивных дронов для истребителей
Массачусетский технологический институт по заказу ВВС США занялся разработкой компактных реактивных беспилотных летательных аппаратов, которые можно было бы запускать со стандартного подвеса для ракет под крылом истребителя. Новая разработка получила название Firefly.
ПодробнееToyota представила гуманоидного робота с экзоскелетным управлением
Компания Toyota представила гуманоидного робота T-HR3, управляемого с помощью экзоскелетного контроллера с шлемом виртуальной реальности. Система позволяет оператору управлять движениями робота на месте или передвигать его, а также чувствовать отдачу при взаимодействии с объектами.
ПодробнееЧеловекоподобный робот научился делать сальто
Специалисты Boston Dynamics научили прямоходящего робота Atlas выполнять сальто. Ролик с демонстрацией его новых способностей опубликован на YouTube-канале компании.
ПодробнееРобот-спасатель от Honda: пять «глаз» и 33 степени подвижности
На Конференции по робототехнике в Ванкувере компания Honda представила прототип робота-спасателя E2-DR. У новинки 33 степени подвижности, пять «глаз» и защищенный от пыли и влаги корпус.
ПодробнееToyota представила автомобиль-робот, в салоне которого сразу 2 водительских места
Казалось бы, суть самоуправляемых автомобилей заключается в том, чтобы максимально обеспечить удобство пассажиров и «убрать» из салона водителя, доверив контроль за ситуацией роботу. Вроде бы логичное решение, но вот автоконцерн Toyota думает иначе. Недавно они представили крайне продвинутую версию самоуправляемого авто. Только вот водительских мест в нем аж целых два.
ПодробнееRHP2 - гуманоидный робот, созданный для того, чтобы падать, подниматься и снова падать
Исследователи-робототехники во всем мире тратят безумно большое количество времени и усилий для того, чтобы предотвратить или уменьшить вероятность падения создаваемых ими роботов.
ПодробнееМифы и факты о сверхумном искусственном интеллекте
Станет ли искусственный интеллект лучшим изобретением человечества или же, наоборот, его худшей ошибкой?
Подробнее/ мнения экспертов и членов инициативной группы
- Профессор практики Московской школы управления СКОЛКОВО, к.э.н., партнер группы "Метавер"
Павел Олегович
Лукша«Развитие интерфейсов позволяет принципиально по-другому взаимодействовать не только с локальным пространством, но и с глобальным пространством, т.е. продолжая «мозг – компьютер – Сеть», мы можем получать системы принципиально нового способа организации».
- Российский писатель-футуролог, журналист
Максим
КалашниковЧлен инициативной группы«Это то, что еще никто в мире не решился делать. Создание сверх- и постлюдей считаю спасением нас от вырождения и вымирания, обретением новой силы. Именно это может сделать Россию мировым лидером....»
- Разработчик инновационных технологий, изобретатель, мастер ТРИЗ (теория решения изобретательских задач), кандидат педагогических наук
Марат Семенович
Гафитулин«...В моем понимании слияние человека и машины началось сразу же, как только человек целенаправленно взял в руки предмет своего труда».
- Доцент кафедры информационных технологий Киотского университета и профессор Университета Осаки (Osaka University), двадцать восьмой гений из списка «Сто гениев современности», создатель антропоморфного робота «Геминоид» HI-1 (Geminoid)
Хироси
Исигуро«...Однажды мы сможем добиться появления аватаров и воспроизведем функции человеческого мозга внутри этого робота. И тогда люди смогут устремиться к бессмертию...»
- Доктор биологических наук, профессор, заведующий лабораторией математической нейробиологии Института высшей нервной деятельности и нейрофизиологии РАН
Александр Алексеевич
Фролов«Проблема создания искусственной памяти, сохраняющей содержимое естественной памяти индивидуального человека, хотя и является сложной, но представляется разрешимой...»
- Доктор биологических наук, профессор, изобретатель аппарата «Биоискусственная печень»
Вячеслав Евгеньевич
РябининЧлен инициативной группы«Вся тенденция развития науки показывает: то, что мы считали невозможным, становится возможным. Кто мог представить, что руки и ноги начнут ходить под влиянием соответствующих импульсов? Прогресс движется не в арифметической, а в геометрической прогрессии...»
- Доктор медицинских наук, профессор, заведующий лабораторией роста клеток и тканей Института теоретической и экспериментальной биофизики РАН
Борис Карпович
Гаврилюк«Для кожи киборга нужно просто сделать систему питания. А вообще... мы ведь несложно устроены! Есть всего несколько систем: кровеносная разносит кислород и питательные вещества, выделительная выводит отходы. Остальное — рабочие органы. Вначале можно сделать простейший живой организм. А потом более сложные системы...»
- Директор Центра клеточных и биомедицинских технологий Первого Московского государственного медицинского университета, специалист по осознанному управлению здоровьем, биотерапии и профилактике старения
Дмитрий Алексеевич
ШаменковЧлен инициативной группы«Тело постепенно становится искусственным, появляются новые ткани, замещающие существующие, новые средства коммуникации, так или иначе расширяющие пределы нашего тела. Безусловно, человек технологизируется. Поэтапно мы движемся к формированию кибернетического организма...»
- Доктор биологических наук, заведующая лабораторией липидного обмена РНИИ геронтологии
Елена Владимировна
ТерёшинаЧлен инициативной группы«И не нужно бояться. Проект по созданию носителя для бессмертного разума очень нужен. Конечно, природа рождает умных, талантливых, гениальных людей, но они смертны. Человечество выходит из этого положения — создает книги. И знания так или иначе передаются потомкам. А представьте, гений будет работать вечно!..»
- Историк и теоретик культуры, культуролог, консультант по культурному развитию. Доцент Института искусств и культуры и Философского факультета ТГУ
Дмитрий Владимирович
Галкин«Искусство – уникальный ресурс для фабрики инноваций. Только в искусстве креативная мощь так тесно связана с порождением смыслов и гуманизацией технологий...»
- Кандидат физико-математических наук, старший научный сотрудник ТОИ ДВО РАН, композитор, философ
Виктор Юрьевич
Аргонов«Я думаю, что прежде, чем начать радикальную киборгизацию мозга, необходимо найти нейрокоррелят сознания. Имеет ли он физическую или чисто информационную природу в форме нейросигналов? Есть ли группа нейронов, которая непосредственно ответственна за сознание? Или, может быть, сознание порождается еще более мелкими объектами внутри нейронов...»
- Доцент, кандидат технических наук, профессор кафедры САиУ
Лев Александрович
СтанкевичПервый этап решения проблем бессмертия человека имеет своей главной целью создание нейроуправляемого аватара – гуманоидного робота с человекоподобным скелетом, набором технических мышц и сенсоров.
- Руководитель Отдела медицинской психологии (Научный Центр Психического Здоровья РАМН), действительный член Академии медико-технических наук РФ
Сергей Николаевич
Ениколопов«Разговоры о том, что технологически мы можем достичь бессмертия, во всяком случае, фантастического удлинения жизни, ведут к пересмотру огромного пласта наших собственных убеждений».
- Доктор философских наук, профессор
Сергей Владимирович
Кричевский«...В таком теле, как бы там медицина ни боролась, увы, есть масса рисков, радиационных и прочих, которые пока непреодолимы. И мы не можем существовать вне Земли, в этой враждебной среде, не решив эти вопросы».
- Руководитель компании «Нейроботикс»
Владимир Анатольевич
КонышевЧлен инициативной группы«Перенос мозга в искусственное тело — более выносливое, более совершенное — единственная возможность человеческой расе остаться на Земле...»








LinkedIn
LiveJournal
Google
Я.ру
Twitter
Facebook
ВКонтакте
Mail.ru