/ Новости

17.02.2016

Новый нейроинтерфейс позволил управлять отдельными пальцами протеза

Американские исследователи разработали нейроинтерфейс, позволяющий управлять отдельными пальцами биомеханического протеза. О своей работе они пишут в Journal of Neural Engineering.

Современные протезы, управляемые мозгом пациента, обеспечивают только синхронные движения пальцами, при которых кисть работает, как простой зажим (подобное движение человек совершает, например, когда берет теннисный мяч). Сотрудники Университета Джонса Хопкинса в Балтиморе, штат Мэриленд, пригласили для участия в эксперименте пациента с эпилепсией, которому для выявления очага судорожной активности было назначено электрокортикографическое картирование мозга (ЭКоГ, регистрация мозговой активности с помощью электродов, подведенных непосредственно к коре мозга).

На участок коры мозга добровольца, отвечающий за движение кисти, наложили прямоугольную пластину со 128 электродами. Каждый из них регистрировал электрическую активность участка мозга диаметром около одного миллиметра. Затем пациенту предложили поочередно шевелить пальцами и записывали полученные сигналы. Электрическую активность коры при обработке тактильных ощущений зарегистрировали с помощью вибрационной перчатки, раздражающей кончики пальцев.

Полученные данные обработали с помощью специально разработанного алгоритма, и путем машинного обучения создали интерфейс упреждающего анализа сигналов мозга. Этот интерфейс позволил участнику исследования управлять пальцами модульного биомеханического протеза руки (Modular Prosthetic Limb) без предварительного обучения.

В начале эксперимента точность управления отдельными пальцами составила 76 процентов. Когда в алгоритме объединили безымянный палец и мизинец, которые в норме часто движутся совместно, этот показатель повысился до 88 процентов. Точность полного сгибания заданного пальца составила соответственно 64 и 77 процентов. После оптимизации выбора электродов максимальная точность управления отдельным пальцем достигла 96,5 процента. Движениям и тактильной обратной связи сопутствовала специфическая активация соответствующих участков коры мозга.

«Полученные результаты показали, что основанный на ЭКоГ нейроинтерфейс способен использовать природную анатомию сенсомоторной коры для управления отдельными пальцами в реальном времени без предварительных тренировок», — пишут авторы исследования. По словам одного из них, профессора неврологии Нэйтана Кроуна (Nathan Crone), для клинического применения технологию необходимо существенно доработать, и основанный на ней протез будет дорогостоящим.

Источник: https://nplus1.ru/news/2016/02/17/prosthetic-fingers





30.05.2045

Стать расой бессмертных – главная эволюционно-историческая задача человечества в III тысячелетии

Имея мышление бессмертных, парадигму бессмертных в качестве мировоззренческой основы, такие люди обязательно реализуют подобные технологии, и мир радикально изменится. Эволюционная ветвь гомо сапиенс в очередной раз сделает крутой вираж и вынесет человечество к невообразимым высотам, туда, где раньше парили только избранные одиночки – бессмертные и боги.

Подробнее
30.07.2017

В мозге найдены управляющие старением клетки

Американские ученые обнаружили в мозге мышей клетки, которые регулируют скорость старения организма.

Подробнее
29.07.2017

В Гарварде создали материал, способный заклеить любую рану

Недавно группе ученых из Гарварда удалось разработать клей для человеческих тканей. Этот клей хорошо прилипает к любым мокрым поверхностям, обеспечивая возможность «заклеить» даже поврежденную сердечную мышцу.

Подробнее
25.07.2017

Китайцы научили роботов плавать в крови

Исследователи из Харбинского политехнического университета разработали микророботов для передвижения по кровеносным сосудам. Роботы управляются с помощью внешнего магнитного поля и могут за секунду преодолевать до 12 раз большее расстояние, чем их длина. Предполагается, что в будущем такие роботы смогут доставлять лекарства к конкретным участкам органов.

Подробнее
17.07.2017

Имплантируемый чип-микроскоп позволит увидеть обработку информации мозгом

Исследователи из Университета Райса разработали прототип имплантируемого в мозг чипа-микроскопа, который позволяет с высоким разрешением считывать сигналы с нейронов коры мозга, отвечающих за зрение. Чип был создан в рамках программы DARPA по изучению процессов обработки речи, зрения и слуха. Одной из конечных целей проекта является создание зрительных протезов, которые будут посылать визуальную информацию напрямую в мозг.

Подробнее
16.07.2017

В Швейцарии напечатали способное биться сердце

Сердце напечатано исследовательской группы из Высшей технической школы Цюриха в Швейцарии — именно там специалисты с помощью технологий 3D-печати и напечатали искусственное сердце из силикона.

Подробнее
14.07.2017

Роботами научились командовать «по-человечески»

Исследователи из Университета Брауна создали алгоритм, позволяющий роботам лучше понимать команды на естественном языке. Специалисты научили алгоритм не только переводить команды в действия, но и анализировать уровень их абстракции. После обучения робот правильно интерпретировал команды в 90 процентах случаев в течение одной секунды.

Подробнее
03.07.2017

Дрон научили управляться с подвешенным на тросе грузом

Исследователи из Цюрихского университета оптимизировали расчеты поведения груза, закрепленного на тросе под беспилотником, а также продемонстрировали эффективность своего подхода экспериментально.

Подробнее
03.07.2017

Корейцы научили микролабиринты самоорганизации

Исследователи из Южной Кореи разработали масштабируемую технологию изготовления лабиринтообразных микроструктур с программируемой направленностью.

Подробнее
29.06.2017

РОССИЙСКИЕ УЧЁНЫЕ СОЗДАЛИ ПРЕПАРАТ, «ВЫЖИГАЮЩИЙ» РАКОВЫЕ ОПУХОЛИ ИЗНУТРИ

Значительного успеха в лечении рака удалось добиться отечественным ученым из НИТУ «МИСиС» и МГУ и ООО «Медицинские нанотехнологии». Они разработали и приступили к доклиническим испытаниям препарата с наночастицей железа, который практически «сжигает» опухоль изнутри.

Подробнее
19.06.2017

Мягкий робот облегчит проведение колоноскопии

Инженеры из Колорадского университета в Боулдере разработали мягкого робота-колоноскопа, способного передвигаться подобно червям, сжимаясь и разжимаясь в разных частях. Такая конструкция позволит снизить неприятные ощущения при колоноскопии.

Подробнее
/ мнения экспертов и членов инициативной группы
Больше мнений

Войти как пользователь:

Если вы зарегистрированы на одном из этих сайтов, вы можете пройти быструю регистрацию. Для этого выберите сайт и следуйте инструкциям.

Войти по логину 2045.ru

Email:
У Вас еще нет логина на 2045? Зарегистрируйтесь!
Уважаемый единомышленник, если вы поддерживаете цели и ценности Стратегического общественного движения «Россия 2045», регистрируйтесь на нашем портале.

Быстрая регистрация:

Если вы зарегистрированы на одном из этих сайтов, вы можете пройти быструю регистрацию. Для этого выберите сайт и следуйте инструкциям.

Регистрация

Имя:
Фамилия:
Сфера деятельности:
Email:
Пароль:
Введите код с картинки:

Показать другую картинку

Восстановить пароль

Email:

Текст:
Email для связи:
Вложение ( не более 5 Мб. ):
 
Закрыть
план работ корпорации «Бессмертие»